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THE EYES PREFER REAL IMAGES
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For better or worse, virtual imaging displays are with us in the form of narrow-angle

combining-glass presentations, head-up displays (HUD), and head-mounted projections of wide-

angle sensor-generated or computer-animated imagery (HMD). All of our military and civil avia-

tion services and a large number of aerospace companies are involved in one way or another in a

frantic competition to develop the best virtual imaging display system. The success or failure of

major weapon systems hangs in the balance, and billions of dollars in potential business are at

stake. Because of the degree to which our national defense is committed to the perfection of virtual

imaging displays, a brief consideration of their status, an investigation and analysis of their prob-

lems, and a search for realistic alternatives are long overdue.

CURRENT STATUS

All of our currently operational tactical fighter aircraft are equipped with HUDs. Helicopters

are navigated and controlled, and their weapons are delivered, with a variety of imaging displays

including, in addition to HUDs, both panel-mounted and head-mounted image intensifiers and

forward-looking infrared (FLIR) and low-light TV displays. Even some strategic aircraft and a

few commercial airliners contain virtual imaging displays. A new generation of remotely piloted

vehicles (RPV) are intended to be flown by reference to wide-angle but relatively low-resolution

sensor imagery presented stereoscopically by head-mounted binocular displays. And Detroit is
about to offer HUDs for cars.

THE TROUBLE WITH HUDS AND HMDS

As for the operational problems, about 30% of tactical pilots report that using a HUD tends to

cause disorientation, especially when flying in and out of clouds (Barnene, 1976; Newman, 1980).

Pilots frequently experience confusion in trying to maintain aircraft attitude by reference to the

HUD's artificial horizon and "pitch-ladder" symbology, particularly at night and over water, and

there are documented cases of airplanes becoming inverted without the pilots' awareness (Kehoe,

1985). Pilots have also reported a tendency to focus on the HUD combining glass instead of the

outside real-world scene (Jarvi, 1981; Norton, 1981). The resulting myopia is a special case of the

more general anomaly known as "instrument myopia" (Hennessy, 1975).

Misaccommodation of the Eyes

Whatever the cause, it is a repeatedly observed experimental fact that our eyes do not automati-

cally focus at optical infinity when viewing collimated virtual images, but lapse inward toward their

dark focus, or resting accommodation distance, at about arm's length on average (Hull, Gill, and

21-1



Roscoe,1982;Iavecchia,Iavecchia,andRoscoe,1988;NormanandEhrlich, 1986;Randle,
Roscoe,andPetitt,1980). Theperceptualconsequenceof positivemisaccommodationis thatthe
wholevisualsceneshrinksin apparentangularsize.Thisshrunkenappearancecausesdistant
objectsto bejudgedfartherawaythantheyare,andanythingbelowtheline of sight,suchasthe
surfaceof theterrainoranairportrunway,appearshigherthanit really is relativeto thehorizon
(Roscoe,1984,1985).

Theeffectof theHUD opticsis illustratedin figure 1. TheexperimentwasconductedbyJoyce
andHeleneIavecchiaat theNavalAir DevelopmentCenter in Pennyslvania. A HUD was set up

on one rooftop and a "scoreboard" assembly with selectively lighted numerals of various sizes was

mounted on top of another building 182 m away and of about the same height. Observers were

asked to read scoreboard numbers as they appeared and also numbers presented by the HUD on

half the trials. Concurrently, the eye accommodation of the observers was measured with a polar-
ized vernier optometer.

Figure 1 shows the average focal responses to the scoreboard numerals and the background

terrain beyond the scoreboard, with the HUD turned Off and with it turned On. In either case the

observers' focal responses were highly dependent on their individual dark focus distances; in fact,

knowing each individual's dark focus accounted for 88% of the variance in focal responses under

all conditions of the experiment. Excluding Observer 9, whose dark focus was almost three

diopters (D) beyond infinity, the average for the remaining nine emmetropes was 1.06 D, or just
short of 1 m.

But the striking result shown in figure 1 is the fact that when the HUD was turned On, for all
10 observers, focus shifted inward from an average of 0.02 D, or 50 m, to an average of 0.20 D,

or 5 m. Once again excluding Observer 9, the average inward shift was from 0.27 D, about 4 m,

to 0.47 D, about 2 m. Although such shifts have little effect on the apparent clarity of the visual

scene, they have tremendous effects on the apparent size, distance, and angular direction of terrain
features.

Accommodation and Apparent Size

Despite wide individual differences among observers, the average apparent size of objects is
almost perfectly correlated (r. > 0.9) with the distance at which the eyes are focused (Benel, 1979;

Hull, Gill, and Roscoe, 1982; Iavecchia, Iavecchia, and Roscoe, 1983; Roscoe, Olzak, and

Randle, 1976; Simonelli, 1979). Thus, the positive misaccommodation induced by collimated

HUD symbology can partially account for the fact that pilots flying airplanes or flight simulators by

reference to virtual imaging systems make fast approaches, round out high, and land long and hard
(Campbell, McEachern, and Marg, 1955; Palmer and Cronn, 1973).

Such biased judgments also partially account for the fact that helicopter pilots flying with
imaging displays frequently collide with trees and other surface objects and the fact that the U. S.

Air Force between 1980 and 1985 lost 73 airplanes in clear weather because of pilot misorienta-

tion, resulting in controlled flight into the terrain (54), or disorientation resulting in loss of control

(19) while flying by reference to collimated HUDs (Morphew, 1985). When flying by reference to

panel-mounted or head-mounted imaging displays, helicopter pilots approach objects slowly and

tentatively, and still they are frequently surprised when an apparently distant tree or rock suddenly
fills the wide-angle sensor's entire field of view.
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Fixed-wingairplanepilotsflying with HUDsalsojudgeatargetto befartherawayandthedive
angleshallowerthantheyare,resultingin almost-always-fatal"controlled-flight-into-the-terrain"
accidents.In theU.S.Air Force,suchaccidentshavecontinuedto occurattherateof aboutone
permonthsinceHUDscameinto generaluseatthebeginningof thisdecade.Two monthsago
(June1987)anF-16left a smokinghole in theground,andlastmonthit wasanF-111. The
Navy'sexperiencehasbeenessentiallythesame.

Optical Minification

Misorientation and disorientation with panel-mounted and some head-mounted imaging dis-

plays are exacerbated by the fact that limited display size and the need to display the widest practi-
cal outside visual angles typically result in drastic optical minification, which adds to the perceptual

minification caused by the misaccommodation. If the display area were not so limited and could be

varied to accommodate the wide individual differences in dark focus distances, images of the out-

side world could be magnified by appropriate amounts to neutralize each individual's perceptual

bias. The average magnification required would be X1.25 (Roscoe, 1984; Roscoe, Hasler, and

Dougherty, 1966), but this value would be correct for only a portion of the population, possibly

requiring stricter pilot selection.

Image Quality

Display minification and perceptual biases are two sources of error in human judgments of

size, distance, and angular location, but there are other sources of error as well, namely, the vari-

able errors associated with adverse ambient viewing conditions (atmospheric attenuation and
reduced illumination), the limited resolution of cameras and display devices, and the further loss of

resolution with image intensification. All of these factors serve to reduce contrast and detail, the

principal components of image quality, and the accuracy with which people can extract positions,

rates, and accelerations relative to outside objects in the visual environment.

DISPLAY ALTERNATIVES

Because of the adverse effects of virtual images on eye accommodation, as well as the optical

minification and poor image quality typically associated with sensor-generated displays, our

judgments of spatial relations are simply not good enough to support complex flight missions as
safely or effectively as we need. To date the advocates of virtual image displays have adamantly

refused to acknowledge the implication of misaccommodation in the misorientation and disorienta-

tion of pilots flying with HUDs. Instead they have attributed the problems primarily to the limited

fields of view afforded by the combining glasses used with current systems.

To address the limited-field-of-view problem, each of our military services, including the

Marines, is spending millions of dollars a year--to say nothing of the IR&D funds invested by

private companies--to develop wide-angle, head-mounted imaging displays, in many cases cou-

pling camera line-of-sight to head or eye orientation. Still clinging to the assumption that the eyes

will focus collimated images at optical infinity, the advocates of head-mounted displays and
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head-coupledsensorsnowpromisethatapilot will beableto maintaingeographicorientationand
makeveridicaljudgmentsof distances,ratesof closure,andangulardirectionsto visiblenavigation
pointsandtargets.

To dispelanydoubt that such promises will come true, designers of some sensor and display

systems are delivering imagery from two cameras independently to the two eyes to provide stereo-

scopic viewing (or even hyperstereo by exaggerating the interocular distance between the cameras).

Many are convinced that stereo viewing will create an illusion of "remote presence" and thereby

improve judgments of size, distance, and angular location sufficiently to make it unnecessary to

provide automatic sensors of vehicle positions and rates for navigation and obstacle avoidance.

Experience with head-mounted displays, whether binocular or biocular (both eyes receiving the

same images), does not warrant these wishful thoughts.

Evidence from a variety of experimental and operational contexts indicates that binocular judg-

ments of size and distance are not markedly better than monocular judgments, except at very short

distances (as in threading a needle). In fact, Holway and Boring (1941) found monocular size

judgments to be more nearly veridical than binocular judgments when good distances cues are pre-

sent. In any case, the large bias errors in size, distance, and angular position judgments caused by

misaccommodation to virtual images would more than cancel any minor benefits of disparate

images to the two eyes.

In the absence of some striking breakthrough in human genetic engineering, the long-range
prognosis for head-mounted displays is not good. Not only do our eyes refuse to behave as dis-

play designers would like to believe, but the illusion of vection induced by the "streaming" of
objects near the periphery of wide-angle views often leads to motion sickness, particularly with

head-coupled sensors and the consequent smearing of the images with head movements. Unfortu-

nately our sole dependence on virtual imaging displays for tactical missions (HUDs now and

HMDs in the future) has resulted in almost total suppression of research and development of more
easily optimized direct-view displays of sufficient angular size to provide the needed fields of view

with appropriate magnification.

WHAT CAN BE DONE

If we dismiss the genetic engineering approach, there are still several reasonable courses of

action. In the short run, these include (1) trying to "fix" the HUD optics to compensate for the

misaccommodation that leads to misorientation, and (2) modifying the ambiguous HUD symbol-

ogy that leads to attitude reversals and subsequent disorientation. In the longer run, abandon the

virtual image approach and concentrate on large, integrated forward-looking and downward-
looking direct-view displays in which computer-animated flight attitude, guidance, and prediction

symbology is superposed on sensor-generated real-world imagery.

Fixing the HUD

To induce pilots to focus at optical infinity when viewing virtual images, Norman and Ehrlich

(1986) in Israel introduced a negative focal demand of-0.5 D with the desired result, although

there were wide individual differences in responses as a function of individual dark-focus
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distances.Thus,thefirst experimental fix should be the addition of variable optical refraction to

offset each individual pilot's inward focal lapse induced by the HUD's virtual images. Turning the

HUD On would require a key coded to select the pilot's specific correction based on the dark
focus. At this time, no one can be sure how successful this fix will be, but it must be tried.

Almost as important is the complete redesign of HUD symbology. Just how complicated and

confusing it is can be appreciated from the estimate of an Army Instructor Pilot that an average

student helicopter pilot requires 200 hr of simulator and flight training to master the gaggle of

symbols (personal communication). Furthermore, the attitude presentation in fixed-wing airplanes

is conducive to horizon and pitch-ladder control reversals that result in disorientation and

"graveyard spirals" at night and in marginal weather. At the very least, a frequency-separated pre-

dicted flightpath "airplane" symbol that banks and translates in immediate response and in the same

direction as control inputs should replace the present velocity vector and acceleration symbology
(Roscoe, 1980, Ch. 7; Roscoe and Jensen, 1981).

Presenting the Big Picture

If head-mounted, wide-angle imaging displays are ever to be safe and successful, the apparent

minification of the outside world will have to be compensated for by individually selectable optical

magnification, or the eyes will have to be induced to focus at or near optical infinity, as in the case

of HUDs. Neither approach will be simple. Furthermore, the whole virtual image display concept

depends on a gross reduction, rather than any increase, in the weight of any head-mounted device

to be used in a high-G environment. All things considered, it is surely premature to give up on

direct-view, panel-mounted displays.

Large, integrated, direct-view displays offer many advantages in terms of visual performance
as well as ease of achievement and lower cost. Eyes focus real images more accurately than virtual
images (Hull, Gill, and Roscoe, 1982; Iavecchia, Iavecchia, and Roscoe, 1988; Randle, Roscoe,

and Petitt, 1980). Although many with 20/20 vision cannot focus out to optical infinity, all

emmetropes can focus at the distance of cockpit instrument panels. Thus, although magnification

of sensor-generated or computer-animated images of the outside world will be required, as it is

with direct-view projection periscopes (Roscoe, 1984; Roscoe, Hasler, and Dougherty, 1966), a

single, fixed-magnification factor of about X1.25 will suffice for most emmetropes.

To make room for large forward-looking and downward-looking (and possibly sideways-

looking) displays, a lot of single-variable dedicated instruments and controls will have to be
replaced by insets that appear selectively on the large displays as a function of the mission phase,

aircraft configuration, mode of operation, weather and traffic, system malfunctions, and in the case

of military aircraft, weapon selection. Furthermore, with the ever-increasing complexity of aircraft

systems and military missions, many future airplanes---despite their high degrees of automation--

will require at least two pilots with a redistribution of functions and available information.

In the military there will always be a heavy premium on being able to take advantage of what-

ever is visible to the naked eye. However, trying to combine synthetic imagery with contact visi-

bility compromises both, and a strong case can be made for distributing operational functions and

information sources between an "inside" pilot and an "outside" pilot. The inside pilot would nor-

mally do all the flying in instrument meteorological conditions (IMC) and most of the flying under

visual meteorological conditions (VMC), using a direct-view, wide-angle projection periscope and
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thelarge,panel-mountedpictorial displayssurroundingthepilot deepinsidetheairplane.The
outsidepilot wouldusehisor hereyesto supplementtheimagingsensors,domostof thecom-
municatingandproceduralhousekeeping,andfly anymaneuverthatrequiresdirectcontact
visibility.

21-6



REFERENCES

Barnett, J. F.: Role of Head-up Display in Instrument Flight. IFC-LR-76-2, Randolph Air Force

Base, TX: Instrument Flight Center, 1976.

Benel, R. A.: Visual Accommodation, the Mandelbaum Effect, and Apparent Size. BEL-79-1/

AFOSR-79-5, New Mexico State Univ., Behavioral Engineering Laboratory, Las Cruces,

1979. (Dissertation Abst. Intern., vol. 40., no. 10B, 1980, pp. 5044; Univ. Microfilm

No. 80-08974.)

Campbell, C. J.; McEachern, L. J.; and Marg, E.: Flight by Periscope. WADC-TR-55-142,

Wright-Patterson Air Force Base, OH: Wright Air Development Center, Aero Medical Labo-

ratory, 1955.

Hennessy, R. T.: Instrument Myopia. J. Opt. Soc. Amer., vol. 65, no. 10, 1975,

pp. 1114-1120.

Holway, A. H.; and Boring, E. G.: Determinants of Apparent Size with Distance Variant. Amer.

J. Psychol., vol. 54, no. 1, 1941, pp. 21-37.

Hull, J. C.; Gill, R. T.; and Roscoe, S. N.: Locus of the Stimulus to Visual Accommodation:

Where in the World, or Where in the Eye? Human Factors, vol. 24, no. 3, 1982,

pp. 311-319.

Iavecchia, J. H.; Iavecchia, H. P.; and Roscoe, S. N.: The Moon Illusion Revisited. Aviation,

Space, Environ. Med., vol. 54, no. 1, 1983, pp. 39-46.

Iavecchia, J. H.; Iavecchia, H. P.; and Roscoe, S. N.: Eye Accommodation to Head-up Virtual

Images. Human Factors, vol. 30, no. 6, 1988, pp. 689-702.

Jarvi, D. W.: Investigation of Spatial Disorientation of F-15 Eagle Pilots. ASD-TR-81-5016,

Wright-Patterson Air Force Base, OH: Aeronautical Systems Division, 1981.

Kehoe, N. B.: Colonel Kehoe's Spatial Disorientation (SDO) Incident in a F-15 during VMC. In

G. B. McNaughton (Ed.), Aircraft Attitude Awareness Workshop Proceedings, Wright-

Patterson Air Force Base, OH: Flight Dynamics Laboratory, 1985, pp. 1-5-1 to 1-5-4.

Morphew, G. R.: Transcript of Open Forum Session. In G. B. McNaughton (Ed.), Aircraft
Attitude Awareness Workshop Proceedings, Wright-Patterson Air Force Base, OH: Flight

Dynamics Laboratory, 1985, p. 3-8-1.

Newman, R. L.: Operational Problems with Head-up Displays During Instrument Flight.
AFAMRL-TR-80-116, Wright-Patterson Air Force Base, OH: USAF Aerospace Medical

Research Laboratory, 1980.

Norman, J.; and Ehrlich, S.: Visual Accommodation and Virtual Image Displays; Target Detec-

tion and Recognition. Human Factors, vol. 28, no. 1, 1986, pp. 135-151.

21-7



Norton,P.S. (Moderator)andmembersof theSETPCockpitDesignSubcommittee:Proc.Soc.
Exp. TestPilotsAviation SafetyWorkshop,New York: AIAA, 1981,pp. 19-47.

Palmer,E.; andCronn,F. W.: TouchdownPerformancewith a ComputerGraphicsNight Visual
Attachment.Proc.AIAA VisualandMotionSimulationConference(AIAA paper73-927),
NewYork: AIAA, 1973.

Randle,R.J.; Roscoe,S.N.; andPetitt,J.: Effectsof MagnificationandVisualAccommodation
onAimpointEstimationin SimulatedLandingswith RealandVirtual ImageDisplays.NASA
TP-1635, 1980.

Roscoe,S.N.: Aviation Psychology.IowaStateUniversityPress,Ames, 1980.

Roscoe,S.N.: Judgmentsof SizeandDistancewith ImagingDisplays. HumanFactors,vol. 26,
no. 6, 1984,pp. 617-629.

Roscoe,S.N.: Bignessis in theEyeof theBeholder. HumanFactors,vol. 27,no. 6, 1985,
pp. 615-636.

Roscoe,S.N.; Hasler,S.G.; andDougherty,D. J.: Flight by Periscope:Making Takeoffsand
Landings;theInfluenceof ImageMagnification,Practice,andVariousConditionsof Flight.
HumanFactors,vol. 8, no. 1, 1966,pp. 13-40.

Roscoe,S.N.;Olzak,L. A.; andRandle,R.J.: Ground-referencedVisualOrientationwith
ImagingDisplays:MonocularversusBinocularAccommodationandJudgmentsof Relative
Size. Proc.AGARD Conf.VisualPresentationof CockpitInformationIncludingSpecial
Devicesfor ParticularConditionsof Flying,Neuilly-sur-Seine,France:NATO, 1976,
pp. A5.1-A5.9.

Roscoe,S.N.; andJensen,R. S.: Computer-AnimatedPredictiveDisplaysfor MicrowaveLand-
ing Approaches.IEEETrans.Syst.Man,andCybernet.,vol. SMC-11,no. 11, 1981,
pp. 760-765.

Simonelli,N. M.: TheDarkFocusof Accommodation:ItsExistence,its Measurement,its
Effects,BEL-79-3/AFOSR-79-7,NewMexicoStateUniv.,BehavioralEngineeringLabora-
tory, LasCruces,1979. (DissertationAbstr. Intern.,vol. 41,no. 02B, 1980,p. 722;Univer.
Microfilms No. 80-17984).

21-8



-2.5
nr"
I.I.J
I--
D.

o -2.0
0

>-

z -I.5
la.
z

_J

< -I.O
(J

t-"
13,.
O

o -0.5
I"-

LIJ
>

I--
< O.O
J
LLI
n.-

+O.5
O3
Z
O
{:L
03
,,, +I.0
lY

._I
<_
0
o +1.5
LL

AVERAGE RESPONSES TO SCOREBOARD
AND TERRAIN CONDITIONS:

I ITH HUD OFFWITH HUD ON

8
OPTICAL INFINITY

DARK FOCUS LINE

9-;

I NEAR I I I I I FAR

+3 +2 +1 0 -I -2 -3

DARK FOCUS (DIOPTERS)

Figure 1.- Average focal responses to the scoreboard and the terrain conditions with HUD On and

Off, plotted against each individual's dark focus.
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